
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Montgomery Modular Multiplication via Single-

Base Residue Number Systems

Zabihollah Ahmadpour

Dept. of Computer Science and Engineering

Shahid Beheshti University

Tehran, Iran

z_ahmadpour@sbu.ac.ir

Ghassem Jaberipur

Dept. of Computer Engineering

Chosun University

Gwangju, Republic of Korea

Jaberipur@chosun.ac.kr

Jeong-A Lee

Dept. of Computer Engineering

Chosun University

Gwangju, Republic of Korea

jalee@chosun.ac.kr

Abstract— Montgomery modular multiplication (MMM) in

residue number systems (RNS) uses a base extension (BE)

technique. This is to avoid division, which is hard, slow and

costly in RNS. It is somewhat less costly and faster than the

reverse conversion, via Chinese remainder theorem (CRT) and

reduction factor method. However, it is used one after the other,

for each of the equally large bases. In this work, we modify the

conventional RNS-MMM algorithm via replacing the two

unparalleled BE undertakings with three parallel CRT-like

operations with the same complexity, as BE. As for the reduction

factors, we use a special case of the Kawamura’s algorithm that

leads to definitive result. The proposed RNS-MMM method

allows for squaring the working dynamic range, or halving the

bit-width of the balanced residue channels. Moreover, the

common practice of dynamically changing the working moduli

set in security and crypto applications is less critical due to

doubled size of the pool of available moduli. The proposed

circuits are simulated, tested and synthesized via Synopsys

Design Compiler on the TSMC 65-nm technology, to show 69%

less delay and 28% less area-time-product at the cost of 14%

more energy consumption, with respect to the most relevant

reference work.

Keywords— Montgomery modular multiplication, Residue

number systems, Modular reduction factors, Base extension.

I. INTRODUCTION

Modular multiplication of large ≥ 1024-bit integers is the
basic operation in several public-key cryptosystems (e.g.,
RSA [1], Rabin [2]). It is often realized via the hardware
realization of the well-known Montgomery Modular
Multiplication (MMM) algorithm [3].

MMM realization via residue number system (RNS)
arithmetic leads to speed gain and low power dissipation, due
to the parallel processing nature of residue channels.
However, there are some critical issues in deciding the
characteristic of the working RNS, as are enumerated below.

1) Equal bit-widths 𝑟 of the working 𝑘-moduli RNS is

desirable, since it generally leads to the optimizing property

of speed-balance among the parallel residue channels.

2) Crypto key-lengths of over 210 bits and the required

counter side-channel attack strategies call for hundreds of co-

prime moduli to allow sufficient dynamism in the task of

frequently changing the working moduli set [4].

3) The base extension (BE) technique is commonly used

for avoiding the difficult, slow and costly division in the

MMM.

However, the requirement of employing two equally large

moduli sets doubles the essential number of co-prime moduli,

while the working dynamic range (DR) does not increase and

equals that of one moduli set.

4) Deciding on the values of 𝑘 and 𝑟 is a critical design

issue, where smaller bit-width 𝑟, for speedup, results in more

number of moduli 𝑘, which in turn can slow down the BE.
To take utmost advantage of the available pool of equal

bit-width moduli, getting around the necessity of utilizing two
bases required by the BE technique, saves half of the moduli
in favor of squaring the DR. That is how we were motivated
to modify the conventional BE-based RNS-MMM algorithm,
via replacing the two unparalleled applications of BE to three
parallel operations whose complexities are compatible with
that of the Chinese remainder theorem (CRT); hence hereafter
referred to as CRT-like operations. Therefore, all the available
moduli contribute to the enlargement of DR, where its range
is actually squared. Otherwise, the bit-width of the balanced
residue channels can be halved, for the same DR. On the other
hand, the double sized moduli pool can be best used to further
decrease the probability of successful side channel attacks.
The simulation, test, and implementation results for the
proposed algorithm and the most relevant previous work [5]
show advantages in speedup, and area-time (AT) product
reduction at the cost of more energy consumption.

In the rest of this paper, some background on MMM
definition and RNS essentials are given in Section 2. Section
3 contains the proposed modified RNS-MMM and the
definitive reduction factor derivation. The proposed
architecture is provided for in Section 4, which is evaluated in
Section 5, and its figures of merit are compared with the best
previous relevant work. We conclude the paper in Section 6.

II. BACKGROUND

The Modular multiplication |𝑋 × 𝑌|𝑁 represents the main
operation in most public-key cryptographic algorithms (e.g.,
[1], [2]). The direct realization of |𝑋 × 𝑌|𝑁 (𝑋, 𝑌 ∈ [0, 𝑁 −
1]) requires huge hardware resources, since the working
modulo 𝑁 is extremely large. Therefore, the well-known
Montgomery modular multiplication (MMM) integer function
𝑀𝑀𝑀(𝑋, 𝑌), as is described by (1), is employed to obtain the
modular product |𝑋 × 𝑌|𝑁 via (2).

𝑍 = 𝑀𝑀𝑀(𝑋, 𝑌) = |𝑋𝑌Γ−1|𝑁 = (𝑋𝑌 + 𝑁|𝑁𝑋𝑌|
Γ

) /Γ (1)

|𝑋 × 𝑌|𝑁 = 𝑀𝑀𝑀(𝑍, |Γ2|𝑁) (2)

The Montgomery factor Γ and its multiplicative inverse

Γ−1 , satisfy Γ > 𝑁 and |ΓΓ−1|𝑁 = 1, respectively, and 𝑁 is

the multiplicative and additive inverse of 𝑁 , as 𝑁 =
|(−𝑁)−1|Γ. A verifying proof of (2) is given in Appendix 1.

Jaberipur’s research was supported by the Brain Pool program, funded by

the Ministry of Science and ICT, through the National Research Foundation

of Korea (RS-2023-00263909), and Lee’s research is supported by Basic
Science Research Program funded by the Ministry of Education through the

National Research Foundation of Korea (NRF-2020R1I1A3063857).

To ease the understanding of the RNS realization of the
latter (see Section 3.1), we briefly describe the RNS essentials,
as follows.

A. RNS Essentials

A 𝑘-moduli RNS is a non-positional number system where
a number 𝑋 is represented by a 𝑘 -tuple residue
(𝑥1, 𝑥2, … , 𝑥𝑘) , with respect to 𝑘 -tuple moduli
(𝑚1, 𝑚2, … , 𝑚𝑘) . A residue 𝑥𝑖 , denoted as 𝑥𝑖 = |𝑋|𝑚𝑖

, is

obtained by extracting the integer remainder of
𝑋

𝑚𝑖
, for 1≤ 𝑖 ≤

𝑘. The cardinality of numbers that are uniquely representable
by the RNS in hand, is called dynamic range (DR), which is
maximized by securing mutual primality between the 𝑘
moduli, and thus is equal to 𝑀 = 𝑚1 … × 𝑚𝑘 . Addition,
subtraction, and multiplication are performed faster through 𝑘
parallel residue channels, where the corresponding residue
operands are smaller than original binary operands. However,
division and comparison are considered as difficult (i.e., slow
and costly) operations in RNS, such that often they are
performed via reverse conversion of RNS operands to binary,
performing wide word binary division or comparison, and
forward conversion of the quotient and remainder (if needed)
to RNS equivalents [6].

The CRT is often used for the aforementioned reverse

conversion, as 𝑋 = |∑ |𝑥𝑗𝑀𝑗
−1|

𝑚𝑗
𝑀𝑗

𝑘
𝑗=1 |

𝑀

, where 𝑀𝑗 =
𝑀

𝑚𝑗
,

𝑀𝑗
−1 is the multiplicative inverse of 𝑀𝑗 with respect to 𝑚𝑗. A

common way for the latter modulo-𝑀 reduction, is described
by (3). The reduction factor 0 ≤ γ𝑋 < 𝑘 [7] can be obtained
via an implementation method that is explained in Section 3.2.

𝑋 = �̂� − 𝛾𝑋𝑀, �̂� = ∑|𝑥𝑗𝑀𝑗
−1|

𝑚𝑗
𝑀𝑗

𝑘

𝑗=1

,

𝛾𝑋 = ⌊

∑ |𝑥𝑗𝑀𝑗
−1|

𝑚𝑗
𝑀𝑗 𝑘

𝑗=1

𝑀
⌋

(3)

III. PROPOSED ALGORITHM

The conventional RNS MMM algorithm [7] relies on two
consecutive applications of the BE technique. The BEs
correspond to two non-overlapping moduli sets, whose DRs
are greater than 𝑁 . Such hugely high DR requires large
number of moduli with reasonable bit-width of the
corresponding residue channels in favor of speeding up the
MMM. However, the larger the moduli set, the longer the BE
delay and the more its cost. Nevertheless, the proposed new
RNS modular multiplication algorithm, as is described in the
rest of this Section, consumes the moduli of both bases as one
base, and performs three CRT-like operations in parallel;
hence one or more of the following possibilities can be in
order:

1) Speedup via reducing the bit-widths to half, thus

doubling the number of moduli, for the same working DR.

2) More dynamism in moduli set selection to reduce the

probability of successful side-channel attacks.

3) Keeping the same bit-widths, but reducing the total

number of moduli to half, for faster CRT-like operations.

A. New RNS implementation of (1)

Let the employed single RNS base be denoted as 𝛣 =
{𝑚1, 𝑚2, … , 𝑚𝑘} with 𝑘 main residue channels of equal width
𝑟 . This will be augmented with a particular channel
corresponding to modulo 𝑚0, whose utility will be explained
in the sequel.

Recalling (1), the Montgomery factor Γ is set, as usual
(e.g., [7], [8]), to the DR 𝑀 = 𝑚1 × 𝑚2 … × 𝑚𝑘 (i.e., Γ =
𝑀). Therefore, 𝑀 > 𝑁 and the balanced bit-width 𝑟 must
satisfy 𝑘 × 𝑟 ≥ 𝑛 = ⌈log2 𝑁⌉.

At the outset, recalling (1), the integer 𝑍 = |
𝑋𝑌+𝑁|𝑁𝑋𝑌|𝑀

𝑀
|

𝑁

can be described as in (4), where σ ∈ {0,1} (see Appendix 2,
for a proof).

𝑍 = �̂� − σ𝑁, �̂� =
𝑋𝑌

𝑀
+

𝑁|𝑁𝑋𝑌|
𝑀

𝑀
 (4)

Recalling (3), and similar equations for 𝑌, we decompose

�̂� to 𝑍1 and 𝑍2, as follows.

𝑍1 =
𝑋𝑌

𝑀
=

�̂��̂�

𝑀
− γ𝑋�̂� − γ𝑌�̂� + γ𝑋𝑀γ𝑌, and 𝑍2 =

𝑁Ω

𝑀
=

𝑁Ω̂

𝑀
− γΩ𝑁 , where Ω = |𝑁𝑋𝑌|

𝑀
= Ω̂ − γΩ𝑀 , Ω̂ =

∑ |ω𝑗𝑀𝑗
−1|

𝑚𝑗
𝑀𝑗

𝑘
𝑗=1 , ω𝑖 = |Ω|𝑚𝑖

.

𝑧�̂�, can be obtained in terms of 𝑥𝑖 = |𝑋|𝑚𝑖
= |�̂�|

𝑚𝑖
, 𝑦𝑖 =

|𝑌|𝑚𝑖
= |�̂�|

𝑚𝑖
, and ω𝑖 = |Ω|𝑚𝑖

= ||𝑁|
𝑚𝑖

𝑥𝑖𝑦𝑖|
𝑚𝑖

, as follows.

𝑧�̂� = |�̂�|
𝑚𝑖

= |𝑍1 + 𝑍2|𝑚𝑖
=

|
�̂��̂�

𝑀
− γ𝑋�̂� − γ𝑌�̂� + γ𝑋𝑀γ𝑌 +

𝑁Ω̂

𝑀
− γΩ𝑁|

𝑚𝑖

=

|
�̂��̂�+𝑁Ω̂

𝑀
− (γ𝑋�̂� + γ𝑌�̂� + γΩ𝑁)|

𝑚𝑖

.

Let 𝐹𝑖 = |
�̂��̂�+ 𝑁Ω̂

𝑀
|

𝑚𝑖

, and 𝐺𝑖 = |γ𝑋�̂� + γ𝑌�̂� + γΩ𝑁|
𝑚𝑖

,

which leads to �̂�𝑖 = |𝐹𝑖 − 𝐺𝑖|𝑚𝑖
.

Recalling the integer nature of �̂�, so must be the fraction
𝐹𝑖 . The corresponding integer expression is derived below,

using six variables defined as ξ𝑥𝑖
= |𝑥𝑖𝑀𝑖

−1|𝑚𝑖
, 𝑋𝑖

′ = �̂� −

ξ𝑥𝑖
𝑀𝑖 = ∑ ξ𝑥𝑗

𝑀𝑗
𝑘
𝑗=1
𝑗≠𝑖

, and similar definitions for ξ𝑦𝑖
,𝑌𝑖

′ , ξω𝑖
,

and Ω𝑖
′ . Moreover, six similar ones are defined with the index

𝑗. Also we use the following identities:

|
𝑋𝑖

′

𝑀
|

𝑚𝑖

= |∑ ξ𝑥𝑗
𝑚𝑗

−1𝑘
𝑗=1
𝑗≠𝑖

|

𝑚𝑖

. Likewise, |
𝑌𝑖

′

𝑀
|

𝑚𝑖

=

|∑ ξ𝑦𝑗
𝑚𝑗

−1𝑘
𝑗=1
𝑗≠𝑖

|

𝑚𝑖

, and |
Ω𝑖

′

𝑀
|

𝑚𝑖

= |∑ ξω𝑗
𝑚𝑗

−1𝑘
𝑗=1
𝑗≠𝑖

|

𝑚𝑖

.

𝐹𝑖 = |
(𝑋𝑖

′+ξ𝑥𝑖
𝑀𝑖)(𝑌𝑖

′+ξ𝑦𝑖
𝑀𝑖)+𝑁(Ω𝑖

′+ξω𝑖
𝑀𝑖)

𝑀
|

𝑚𝑖

=

|
𝑋𝑖

′𝑌𝑖
′+ξ𝑥𝑖

𝑀𝑖𝑌𝑖
′+ξ𝑦𝑖

𝑀𝑖𝑋𝑖
′+𝑁Ω𝑖

′

𝑀
+

ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

𝑀𝑖+𝑁ξω𝑖
𝑀𝑖

𝑀
|

𝑚𝑖

Let 𝐹𝑖1
= |

𝑋𝑖
′𝑌𝑖

′+ξ𝑥𝑖
𝑀𝑖𝑌𝑖

′+ξ𝑦𝑖
𝑀𝑖𝑋𝑖

′+𝑁Ω𝑖
′

𝑀
|

𝑚𝑖

, and

𝐹𝑖2
= |

ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

𝑀𝑖+𝑁ξω𝑖
𝑀𝑖

𝑀
|

𝑚𝑖

.

Appendix 3 provides for a proof that 𝐹𝑖2
 yields an integer.

Therefore, 𝐹𝑖1
 must also yield an integer. The corresponding

integer expression for 𝐹𝑖2
 is given as in (5), and that of 𝐹𝑖1

 is

derived below. Note that for notational brevity sake the plain

Σ denotes ∑ ,𝑘
𝑗=1
𝑗≠𝑖

 unless otherwise specified.

𝐹𝑖2
= |

|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + ξω𝑖
|𝑁|𝑚𝑖

𝑚𝑖
−1|

22𝑟

+𝑥𝑖𝑦𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖

⌋ 𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖

⌋ 𝑁)|
𝑚𝑖

|

𝑚𝑖

(5)

𝐹𝑖1
= |

Σ(ξ𝑥𝑗
𝑀𝑗)Σ(ξ𝑦𝑗

𝑀𝑗)+𝑥𝑖Σ(ξ𝑦𝑗
𝑀𝑗)+𝑦𝑖Σ(ξ𝑥𝑗

𝑀𝑗)+𝑁Σ(ξω𝑗
𝑀𝑗)

𝑀
|

𝑚𝑖

= |𝑥𝑖Σ (ξ𝑦𝑗
𝑚𝑗

−1) + 𝑦𝑖Σ (ξ𝑥𝑗
𝑚𝑗

−1) + 𝑁Σ (ξω𝑗
𝑚𝑗

−1)|
𝑚𝑖

since |Σ (ξ𝑥𝑗
𝑀𝑗)|

𝑚𝑖

= 0, due to 𝑗 ≠ 𝑖.

Consequently,

𝑧�̂� =

|

|

𝑥𝑖Σ (ξ𝑦𝑗
𝑚𝑗

−1) + 𝑦𝑖Σ (ξ𝑥𝑗
𝑚𝑗

−1) + 𝑁Σ (ξω𝑗
𝑚𝑗

−1)

+|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + ξω𝑖
|𝑁|𝑚𝑖

𝑚𝑖
−1|

22𝑟

+𝑥𝑖𝑦𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖

⌋ 𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖

⌋ 𝑁)|
𝑚𝑖

−γ𝑌𝑥𝑖 − γ𝑋𝑦𝑖 − γΩ𝑁

|

|

𝑚𝑖

(6)

B. Derivation of the reduction factors

Equation set (7) is a reproduction of (3), where |𝑥𝑖𝑀𝑖
−1|𝑚𝑖

is replaced by ξ𝑥𝑖
, and 𝑀𝑖/𝑀 , by 1/𝑚𝑖 , with similar

expressions for 𝑌 and Ω.

γ𝑋 = ⌊∑
ξ𝑥𝑖

𝑚𝑖

𝑘
𝑖=1 ⌋ , γ𝑌 = ⌊∑

ξ𝑦𝑖

𝑚𝑖

𝑘
𝑖=1 ⌋ , γΩ = ⌊∑

ξΩ𝑖

𝑚𝑖

𝑘
𝑖=1 ⌋ (7)

Following [7], the equations for reduction factors γ𝑋 and
γ𝑌, can be elaborated on to lead to the definitive expressions
in (12), where 𝑚𝑖 = 2𝑟 − δ𝑖 , without loss of generality.
However, γΩ will be handled separately in Section 3.2.1.

Let γ𝑋
+ = ∑

ξ𝑥𝑖

𝑚𝑖

𝑘
𝑖=1 , which given that

ξ𝑥𝑖

𝑚𝑖
=

ξ𝑥𝑖

2𝑟 +
ξ𝑥𝑖

𝑚𝑖
−

ξ𝑥𝑖

2𝑟 =

ξ𝑥𝑖

2𝑟 +
2𝑟ξ𝑥𝑖

−𝑚𝑖ξ𝑥𝑖

2𝑟𝑚𝑖
=

ξ𝑥𝑖

2𝑟 +
ξ𝑥𝑖

δ𝑖

2𝑟𝑚𝑖
, can be decomposed to an easy

to implement part γ𝑋
𝑒 =

∑ ξ𝑥𝑖
𝑘
𝑖=1

2𝑟 and a difficult part γ𝑋
𝑑 =

∑
ξ𝑥𝑖

δ𝑖

2𝑟𝑚𝑖

𝑘
𝑖=1 , as γ𝑋

+ = γ𝑋
𝑒 + γ𝑋

𝑑 .

In the sequel we show that, via some restrictions and
conditions, we can simplify the reduction factor equation as

γ𝑋 = ⌊γ𝑋
𝑒 +

1

2
⌋; hence no need to obtain γ𝑋

𝑑 . For example, (8)

and (9) provide for one pair of sufficient conditions, since they
lead to (10), as follows.

γ𝑋 ≤ γ𝑋
+ = γ𝑋

𝑒 + γ𝑋
𝑑 < γ𝑋 +

1

2
⟹ γ𝑋 +

1

2
− γ𝑋

𝑑 ≤ γ𝑋
𝑒 +

1

2
< γ𝑋 + 1 − γ𝑋

𝑑 , per (8), and γ𝑋 < γ𝑋 +
1

2
− γ𝑋

𝑑 ≤ γ𝑋
𝑒 +

1

2
<

γ𝑋 + 1, per (9).

γ𝑋
+ < γ𝑋 +

1

2
 (8)

γ𝑋
𝑑 <

1

2
 (9)

γ𝑋 < γ𝑋
𝑒 +

1

2
< γ𝑋 + 1 (10)

For (8) to hold, the following is obtained from (3).

𝑋 + γ𝑋𝑀 = ∑ ξ𝑥𝑖
𝑀𝑖

𝑘
𝑖=1 ⟹

𝑋

𝑀
+ γ𝑋 = ∑

ξ𝑥𝑖

𝑚𝑖

𝑘
𝑖=1 = γ𝑋

+ <

γ𝑋 +
1

2
⟹

𝑋

𝑀
<

1

2
, which is satisfied if 𝑀 > 4𝑁 , since 𝑋 <

2𝑁 , must hold. On the other hand, let δ𝑚𝑎𝑥 denote the
maximum δ𝑖-value, which leads to the following, where δ1 =
δ𝑚𝑎𝑥 , δ2 = δ𝑚𝑎𝑥 − 2 , … δ𝑖 = δ𝑚𝑎𝑥 − 2(𝑖 − 1) , … δ𝑘 =
δ𝑚𝑎𝑥 − 2(𝑘 − 1).

γ𝑋
𝑑 = ∑

ξ𝑥𝑖
δ𝑖

2𝑟𝑚𝑖

𝑘
𝑖=1 < ∑

δ𝑖

2𝑟

𝑘
𝑖=1 < ∑ (

δ𝑚𝑎𝑥−(2𝑖−2)

2𝑟)𝑘
𝑖=1 =

𝑘(δ𝑚𝑎𝑥−(𝑘−1))

2𝑟 . Therefore, (9) holds if
𝑘(δ𝑚𝑎𝑥−(𝑘−1))

2𝑟 <
1

2
,

which leads to (11).

δ𝑚𝑎𝑥 <
2𝑟−1

𝑘
+ (𝑘 − 1) (11)

Consequently, (12) yields the reduction factors γ𝑋 and γ𝑌,
if 𝑀 > 4𝑁, and δ𝑖 values satisfy (11).

γ𝑋 = ⌊
1

2
+

∑ ξ𝑥𝑖
𝑘
𝑖=1

2𝑟 ⌋, γ𝑌 = ⌊
1

2
+

∑ ξ𝑦𝑖
𝑘
𝑖=1

2𝑟 ⌋ (12)

1) Derivation of 𝛾𝛺

As in the 𝑋 case,
Ω

𝑀
+ γΩ = γΩ

+ = ∑
ξ𝜔𝑖

𝑚𝑖

𝑘
𝑖=1 . However,

unlike the case of 𝑋, where
𝑋

𝑀
<

1

2
, we have Ω = |𝑁𝑋𝑌|

𝑀
<

𝑀 ⟹
Ω

𝑀
∈ [0,1), which leads to (13), and furthermore to (14),

as follows.

γΩ ≤ γΩ
+ = γΩ +

Ω

𝑀
< γΩ + 1 (13)

γΩ ≤ γΩ
+ = γΩ

𝑒 + γΩ
𝑑 < γΩ + 1 ⟹ γΩ − γΩ

𝑑 ≤ γΩ
𝑒 <

γΩ + 1 − γΩ
𝑑 , per (13), and γΩ < γΩ +

1

2
− γΩ

𝑑 ≤ γΩ
𝑒 +

1

2
<

γΩ + 2, per applying (9), for γΩ
𝑑 . Therefore,

𝛾𝛺 = ⌊𝛾𝛺
𝑒 +

1

2
⌋ − 𝛼,

𝛼 = {
0 𝑖𝑓 𝛾𝛺

𝑒 +
1

2
< 𝛾𝛺 + 1

1 𝑖𝑓 𝛾𝛺
𝑒 +

1

2
≥ 𝛾𝛺 + 1

(14)

Replacing in (6) for the three reduction factors, leads to

𝑧�̂� = |𝑧𝑖
′̂ + |α𝑁|𝑚𝑖

|
𝑚𝑖

, where the definitive residue 𝑧𝑖
′̂ =

|𝑧�̂� − |α𝑁|𝑚𝑖
|

𝑚𝑖
=

|

|

𝑥𝑖Σ (ξ𝑦𝑗
𝑚𝑗

−1) + 𝑦𝑖Σ (ξ𝑥𝑗
𝑚𝑗

−1) + 𝑁Σ (ξω𝑗
𝑚𝑗

−1)

+|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + |𝑁|𝑚𝑖
ξω𝑖

𝑚𝑖
−1|

22𝑟

+𝑥𝑖𝑦𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖

⌋ 𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖

⌋ 𝑁)|
𝑚𝑖

− ⌊γ𝑌
𝑒 +

1

2
⌋ 𝑥𝑖 − ⌊γ𝑋

𝑒 +
1

2
⌋ 𝑦𝑖 − ⌊γΩ

𝑒 +
1

2
⌋ 𝑁

|

|

𝑚𝑖

On the other hand, recalling (4), �̂� = 𝑍 + σ𝑁 ⟹ 𝑧�̂� =

|𝑧𝑖 + |σ𝑁|𝑚𝑖
|

𝑚𝑖
 where 0 ≤ 𝑍 = |�̂�|

𝑁
< 𝑁. Consequently,

𝑧𝑖
′̂ = ||𝑧𝑖 + |σ𝑁|𝑚𝑖

|
𝑚𝑖

− |α𝑁|𝑚𝑖
|

𝑚𝑖

=

||𝑍|𝑚𝑖
+ |σ𝑁|𝑚𝑖

− |α𝑁|𝑚𝑖
|

𝑚𝑖
⟹

𝑧𝑖
′̂ = |𝑍 + σ𝑁 − α𝑁|𝑚𝑖

⟹ 𝑍′̂ = 𝑍 + (σ − α)𝑁 ⟹

−𝑁 ≤ 𝑍′̂ < 2𝑁, since σ, α ∈ {0,1} ⟹ σ − α ∈ {−1,0,1}. To

fix the undesired negative interval for 𝑍′̂ , let 𝑍′̂+
= 𝑍′̂ +

𝑁 ⟹ 0 ≤ 𝑍′̂+
< 3𝑁. Since this result is used as the input for

the next MMM, we need to allow the input range to be as 0 ≤

𝑋, 𝑌 < 3𝑁. Then, 𝑀 > 6𝑁 satisfies the conditions
𝑋

𝑀
<

1

2
 and

𝑌

𝑀
<

1

2
 that was required for (12). However, to extend the

dynamic range to 6𝑁, we add a constant modulo 𝑚0 = 8, as
the sole power-of-two modulo, which increases the DR to 8

times the original ∏ (2𝑟 − δ𝑖)
𝑘
𝑖=1 , where δ𝑖 > 0.

Note that enforcing 𝑍′̂+
 in the subsequent MMM

operations leads to correct results since, recalling (1), 𝑍 =
𝑀𝑀𝑀(𝑋, 𝑌) = |𝑋𝑌𝑀−1|𝑁 ⟹

𝑀𝑀𝑀 (𝑍′̂+
, |𝑀2|𝑁) = |𝑍′̂+

|𝑀2|𝑁|𝑀−1|𝑁|
𝑁

=

|𝑍′̂+
𝑀2𝑀−1|

𝑁
= |𝑍′̂+

𝑀|
𝑁

= |(𝑍 + (𝜎 − 𝛼 + 1)𝑁)𝑀|𝑁

= |𝑍𝑀|𝑁 = ||𝑋𝑌𝑀−1|𝑁𝑀|𝑁 = |𝑋𝑌𝑀−1𝑀|𝑁 = |𝑋 × 𝑌|𝑁 .

To obtain 𝑍′̂+
, we use (15) to find its residues 𝑧𝑖

′̂
+

=

|𝑍′̂+
|

𝑚𝑖

= |𝑧𝑖
′̂ + |𝑁|𝑚𝑖

|
𝑚𝑖

.

𝑧𝑖
′̂
+

= |𝑧𝑖
′̂ + 𝑁|

𝑚𝑖

=

|

|

𝑥𝑖Σ (ξ𝑦𝑗
𝑚𝑗

−1) + 𝑦𝑖Σ (ξ𝑥𝑗
𝑚𝑗

−1) + 𝑁Σ (ξω𝑗
𝑚𝑗

−1)

+|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + |𝑁|𝑚𝑖
ξω𝑖

𝑚𝑖
−1|

22𝑟

+𝑥𝑖𝑦𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖

⌋ 𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖

⌋ 𝑁)|
𝑚𝑖

− ⌊γ𝑌
𝑒 +

1

2
⌋ 𝑥𝑖 − ⌊γ𝑋

𝑒 +
1

2
⌋ 𝑦𝑖 − ⌊γΩ

𝑒 +
1

2
⌋ 𝑁 + 𝑁

|

|

𝑚𝑖

(15)

Algorithm 1 describes the steps of implementation of (15),
whose circuit realization is discussed in Section 4. Note that
the subtrahends in Step 4 represent the reduction factors in
(15).

Algorithm 1 (New RNS-MMM)

Inputs: 𝑚𝑖, 𝑥𝑖, 𝑦𝑖 , 0 ≤ 𝑖 ≤ 𝑘

Outputs: 𝑧𝑖
′̂
+

, 0 ≤ 𝑖 ≤ 𝑘

1) For 𝑖 = 0 to 𝑘 do par

𝑤𝑖 = |𝑥𝑖𝑦𝑖|𝑚𝑖
; ξ𝑥𝑖

= |𝑥𝑖𝑀𝑖
−1|𝑚𝑖

; ξ𝑦𝑖
= |𝑦𝑖𝑀𝑖

−1|𝑚𝑖
;

2) For 𝑖 = 0 to 𝑘 do par

ξ𝜔𝑖
= |𝑤𝑖|�̂�𝑀𝑖

−1|
𝑚𝑖

|
𝑚𝑖

;

𝑢𝑖 = |𝑤𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖
⌋ 𝑀𝑖

−1 + ⌊
𝑁

𝑚𝑖
⌋ 𝑁)|

𝑚𝑖

|
𝑚𝑖

;

3) For 𝑖 = 0 to 𝑘 do par

𝑠𝑖 = ||ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + ξ𝜔𝑖
|𝑁|𝑚𝑖

𝑚𝑖
−1|

22𝑟|
𝑚𝑖

;

4) For 𝑖 = 0 to 𝑘 do par

𝑝𝑥𝑖
= (∑ ξ𝑥𝑗

𝑚𝑗
−1𝑘

𝑗=0,𝑗≠𝑖) − ⌊γ𝑋
𝑒 +

1

2
⌋;

𝑝𝑦𝑖
= (∑ ξ𝑦𝑗

𝑚𝑗
−1𝑘

𝑗=0,𝑗≠𝑖) − ⌊γ𝑌
𝑒 +

1

2
⌋;

𝑝𝜔𝑖
= (∑ ξ𝜔𝑗

𝑚𝑗
−1𝑘

𝑗=0,𝑗≠𝑖) − ⌊γΩ
𝑒 +

1

2
⌋;

5) For 𝑖 = 0 to 𝑘 do par

𝑧𝑖
′̂
+

= |
𝑁 + 𝑥𝑖|𝑝𝑦𝑖

|
𝑚𝑖

+ 𝑦𝑖|𝑝𝑥𝑖
|

𝑚𝑖
+

|𝑁|𝑚𝑖
|𝑝𝜔𝑖

|
𝑚𝑖

+ 𝑢𝑖 + 𝑠𝑖

|

𝑚𝑖

;∎

IV. IMPLEMENTATION OF ALGORITHM 1

The main and most complex step of Algorithm 1 is the
Step 4, which is mainly implemented by the architecture
depicted by Fig. 1. Each of the three parallel expressions for
𝑝𝑥𝑖

, 𝑝𝑦𝑖
, and 𝑝𝜔𝑖

 consist of a main multi-operand MAC

(MOMAC) and a rounded reduction factor, which is obtained
in parallel (not shown in Fig. 1). Intermediate registers are
utilized as well to store the output of the carry-save
multiplication and minimize clock cycle delays. Each Σ, in the
Step 4 is obtained via the lazy reduction technique [9]. The
multipliers are non-modular and produce 2𝑟 -bit products,
where the final multiply-accumulate (MAC) results undergo a

forward conversion, for deriving |𝑝𝑦𝑖
|

𝑚𝑖
, |𝑝𝑥𝑖

|
𝑚𝑖

, and

|𝑝𝜔𝑖
|

𝑚𝑖
. The generated 22𝑟-weighted carries are accumulated

to be δ𝑖
2-folded before entering the forward convertor, since

|22𝑟𝑐|2𝑟−δ𝑖
= |δ𝑖

2𝑐|2𝑟−𝛿𝑖
.

Derivation of the aforementioned Σs, in the channel 𝑖 ,

should be preceded with attaining ξ𝑥𝑗
, ξ𝑦𝑗

, and ξ𝜔𝑗
 values, in

other channels. To do this, we use the second level MMM,
twice, with the Montgomery factor Γ = 2𝑟 [10], as in (16),

which leads to the correct ξ𝑥𝑗
, similarly for ξ𝑦𝑗

, and ξ𝜔𝑗
.

ξ𝑥𝑗
=

(𝑥𝑗|𝑀𝑗
−1|

𝑚𝑗
)+𝑚𝑗|(−𝑚𝑖)−1(𝑥𝑗|𝑀𝑗

−1|
𝑚𝑗

)|

2𝑟

2𝑟 (16)

* FC: forward convertor

Fig 1. Three parallel MOMAC implementing (15)

V. COMPARISON AND EVALUATION

As it is common in the analytical evaluation of MMM and
in crypto algorithms, in general, we discuss the performance
of the proposed MMM in terms of number of the required
multiplications. However, the overall architecture is
synthesized via the Synopsys Design Compiler, and the results
compiled in Table 2.

A. Analytical evaluation

Table 1 contains the number of required binary
multiplications for the Steps of Algorithm 1. The superiority
of this work over the best previous one due to [5], is evident
via comparing the bottom two rows of Table 1. Equal cost and
delay for multipliers of both works are assumed. The reported
pipelined cycle counts of [5] is 2𝑘 + 22, which is twice more
vs the proposed design. However, for a more fair comparison,
the corresponding figure in Table 1 regards the un-pipelined
design, which is 6X. Nevertheless, the cost of our work is 50%
more, leading to expected 3X cost-speed product.

B. Synthesis results

The VHDL codes for designs of the previous most
efficient RNS-MMM [5], and the proposed method are
mapped into the Synopsys Design Compiler on the TSMC 65
nm standard CMOS library. This was done by enforcing
frequency constraints during synthesis.

The results are compiled in Table 2, where some properties
and advantages of the proposed work versus that of [5]
follows.

TABLE 1 - # OF MULTIPLICATIONS REQUIRED FOR IMPLEMENTATION OF (15)

Step
of multiplications

CDP+ Total

1 3 3 × 3 = 9

2 3 3 + 3 = 6

3 2 3 + 1 = 4

4 𝑘 3 × 3𝑘

5 3 5

Grand Total 𝑘 + 11 𝑘(9𝑘 + 24)

Ref. [5] 6𝑘 + 15 𝑘(6𝑘 + 15)
+ Critical delay path

 The MMM speed grows, as the channel width
increases, since the number of channels decreases for
the same key-length.

 62%, 66%, and 69% delay reductions, for channel
widths 𝑟 = 24, 32, and 64, respectively, versus 32 of
[5].

 6% less energy consumption for channel width 𝑟 =
24.

 39% less area consumption per channel width 𝑟 = 24,
and 18% less total area consumption (i.e., including the
reduction factors).

 69%, 42%, and 28% reduced area-time (AT) product,
for 𝑟 = 24, 𝑟 = 32, and 𝑟 = 64, respectively.

 Significant reduction in the probability of successful
side channel attacks due to increase in the number of
available moduli.

Forward convertor

Carry-Save

multiplier

Register

Register

CS Accumulator Inc.

ξ𝜔𝑗
 𝑚𝑗

−1

Carry-Save

multiplier

Register

Register

CS Accumulator Inc.

ξ𝑦𝑗
 𝑚𝑗

−1

Carry-Save

multiplier

Register

Register

CS Accumulator Inc.

ξ𝑥𝑗
 𝑚𝑗

−1

Register

file

Accumulator

Register

𝑧𝑖
′̂
+

FC of Step 5 FC of Step 5 FC* of Step 5

Register

Reduction factor

Register

Reduction factor

Register

Reduction factor

TABLE 2 - SYNTHESIS RESULT OF THE SINGLE BASE MODULAR MULTIPLICATION IN COMPARISON WITH THE AUTHOR'S PREVIOUS WORK AND THE MOST

SIGNIFICANT PREVIOUS WORKS

Design

Size of

the

moduli

pool

Per residue channel

𝒓 𝒌

of

clock

cycle

Clock

cycle

time

Probability

Of successful

attacks

𝒏
𝑴𝑴𝑴 Delay

(ns)

AT

(𝒎𝒔 × 𝒎𝒎𝟐)

PDP

(𝒎𝒔 × 𝒎𝑾)
Area

(𝒎𝒎𝟐)

Power

(𝒎𝑾)

Single Base

3 parallel

MOMAC

1981 0.048 31.8 24
43 75

0.76
2−294 1024 57 0.118 0.078

86 118 2−506 2048 90 0.374 0.246

384000 0.135 62.3 32
32 64

0.79
2−369 1024 51 0.221 0.102

64 96 2−678 2048 76 0.660 0.303

> 106 0.364 127.9 64
16 48

0.97
> 2−274 1024 47 0.274 0.096

32 64 > 2−520 2048 62 0.723 0.253

[5] 251 0.079 17.4 32 32 80 1.86 2−134 1024 149 0.380 0.083

Note that [5] provides for only one channel bit-width 𝑟 = 32,
but with two different moduli selection. The smaller moduli

set regards moduli of the form 232 − (2ℎ ± 1), which leads to
251 co-prime moduli. However, the moduli of the form 232 −
δ, with less restriction on δ, as δ < 215, provides for 4782 co-
prime moduli. Nevertheless, this one is not included in the
comparison set, since the corresponding residue channels
perform slower than those of the smaller moduli set.

On the other hand, recalling (11), the proposed MMM
imposes less restriction on moduli selection, besides co-

primality. For example for 𝑟 = 32 , δ ≤
231

32
+ 31 = 226 +

31 , leading to 384000 co-prime moduli, out of which

(384000
32

) ≈ 10144 moduli sets of size 32 are dynamically

selected. Moreover, the performance of all the corresponding
residue channels are based on deferred end-around carry
scheme of [11].

VI. CONCLUSION

The conventional Montgomery modular multiplication in
residue number system relies on two CRT-like operations with
two non-overlapping moduli sets. The second operation
depends on the result of the first one thus no time overlap is
possible in the course of their executions.

The proposed RNS-MMM implementation uses three
parallel CRT-like operations, all on the same moduli set;
hence it offers faster Montgomery product generation. Also it
frees the second base in favor of doubling the size of moduli
pool. This, in turn, increases the number of choices for
dynamic switching between the working moduli set; hence
reducing the probability of successful side channel attacks in
the cryptosystem that perform modular exponentiation based
on MMM.

The proposed RNS-MMM algorithm enjoys the definitive
derivation of the reduction factors, which is achieved via
extending the value of Montgomery factor (i.e., Γ = 𝑀) to
over six times the value of Montgomery modulo 𝑁 (i.e., Γ =
𝑀 > 6𝑁). This is actually undertaken via augmenting the
moduli-set {𝑚1 … , 𝑚𝑘} with 𝑚0 = 8.

The best results regarding the proposed MMM scheme
occurs for the channel width 𝑟 = 24, and key length 𝑛 =
1024 with over 60% speedup, nearly 20% less area cost, and
6% lower energy consumption, in comparison to the best
previous relevant work due to [5].

VII. APPENDICES

Appendix 1 (Proof for double application of MMM)

Rewriting (2), as |𝑋 × 𝑌|𝑁 = 𝑀𝑀𝑀(𝑀𝑀𝑀(𝑋, 𝑌), |Γ2|𝑁) ,

and twice application of 𝑀𝑀𝑀(𝑋, 𝑌) = |𝑋𝑌Γ−1|𝑁 , as

follows, provides for the desired verification.

𝑀𝑀𝑀(𝑀𝑀𝑀(𝑋, 𝑌), |Γ2|𝑁) =

𝑀𝑀𝑀(|𝑋𝑌(Γ−1)|𝑁 , |Γ2|𝑁) =

||𝑋𝑌(Γ−1)|𝑁 × |Γ2|𝑁 × (Γ−1)|𝑁 =

||𝑋𝑌(Γ−1)|𝑁 × |Γ|𝑁|𝑁 = 𝑍

Appendix 2 (Proof of σ ∈ {0,1} in (4))

Recalling (1) and (4), proof of σ ∈ {0,1} in 𝑍 =

|
𝑋𝑌+𝑁|𝑁𝑋𝑌|𝑀

𝑀
|

𝑁
=

𝑋𝑌+𝑁|𝑁𝑋𝑌|𝑀

𝑀
− σ𝑁 is in order, where 1), 2)

and 3) are used as needed.

1) |𝑋𝑌|𝛤𝑁 = 𝑋𝑌, since 𝑋𝑌 < 𝑁2, 𝛤 = 𝑀 > 𝑁 ⟹ 𝛤𝑁 >
𝑁2 ⟹ 𝑋𝑌 < 𝑀𝑁.

2) 𝑀𝑀−1 − 𝑁𝑁 = 1 ⟹ 𝑀−1 =
1+𝑁𝑁

𝑀
.

3) 𝑋𝑌 + 𝑁|𝑋𝑌�̃�|
𝑀

< 𝑁2 + 𝑀𝑁 =

 (𝑁/𝑀 + 1)𝑀𝑁 < 2𝑀𝑁 ⟹

 |𝑋𝑌 + 𝑁|𝑋𝑌𝑁|
𝑀

|
𝛤𝑁

= 𝑋𝑌 + 𝑁|𝑋𝑌𝑁|
𝑀

− 𝜎𝑀𝑁,

 σ ∈ {0,1}.

𝑍 = |𝑋𝑌𝑀−1|𝑁 = |
𝑋𝑌(1+𝑁𝑁)

𝑀
|

𝑁
=

𝑀|
𝑋𝑌(1+𝑁�̃�)

𝑀
|
𝑁

𝑀
=

|𝑀
𝑋𝑌(1+𝑁�̃�)

𝑀
|
𝑀𝑁

Γ
=

|𝑋𝑌(1+𝑁𝑁)|𝑀𝑁

𝑀
=

||𝑋𝑌|𝑀𝑁+|𝑋𝑌𝑁𝑁|𝑀𝑁|𝑀𝑁

𝑀
=

|𝑋𝑌+𝑁|𝑋𝑌�̃�|𝑀|𝑀𝑁

𝑀
=

XY+𝑁|XY𝑁|M− σM𝑁

𝑀
=

𝑋𝑌

𝑀
+

𝑁|𝑋𝑌𝑁|𝑀

𝑀
− σ𝑁.

Appendix 3 (𝐹𝑖2
= |

(ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

+𝑁ξω𝑖
)𝑀𝑖

𝑀
|

𝑚𝑖

 yields an

integer):

Proof: Recalling the integer nature of 𝐹𝑖 = |
�̂��̂�+ 𝑁Ω̂

𝑀
|

𝑚𝑖

,

the nominator 𝐹𝑖
𝑛 = �̂��̂� + 𝑁Ω̂ is a multiple of 𝑀, and thus

a multiple of 𝑚𝑖 leading to |𝐹𝑖
𝑛|𝑚𝑖

= 0 ⟹

|𝐹𝑖
𝑛|𝑚𝑖

= |
(∑ ξ𝑥𝑗

𝑀𝑗
𝑘
𝑗=1) × (∑ ξ𝑦𝑗

𝑀𝑗
𝑘
𝑗=1) +

𝑁 (∑ ξω𝑗
𝑀𝑗

𝑘
𝑗=1)

|

𝑚𝑖

=

|(ξ𝑥𝑖
𝑀𝑖)(ξ𝑦𝑖

𝑀𝑖) + 𝑁(ξω𝑖
𝑀𝑖)|

𝑚𝑖
=

|(ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

+ 𝑁ξω𝑖
)𝑀𝑖|𝑚𝑖

= 0, since |𝑀𝑗|
𝑚𝑖

= 0, for 𝑗 ≠

𝑖. Therefore, ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

+ 𝑁ξω𝑖
= Ξ𝑚𝑖 is a multiple of 𝑚𝑖. On

the other hand, 𝐹𝑖2
= |

(ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

+𝑁ξω𝑖
)𝑀𝑖

𝑀
|

𝑚𝑖

= |
Ξ𝑚𝑖

𝑚𝑖
|

𝑚𝑖

=

|Ξ|𝑚𝑖
 completes the proof. However, to derive an integer

expression for Ξ, we proceed as follows, where 𝑟, as before,
denotes the width of residue channels.

𝐹𝑖2
= |Ξ|𝑚𝑖

= |
ξ𝑥𝑖

ξ𝑦𝑖
𝑀𝑖+𝑁ξω𝑖

𝑚𝑖
|

𝑚𝑖

=

|
ξ𝑥𝑖

ξ𝑦𝑖
(⌊

𝑀𝑖
𝑚𝑖

⌋𝑚𝑖+|𝑀𝑖|𝑚𝑖
)+ξω𝑖

(⌊
𝑁

𝑚𝑖
⌋𝑚𝑖+|𝑁|𝑚𝑖

)

𝑚𝑖
|

𝑚𝑖

=

|⌊
𝑀𝑖

𝑚𝑖
⌋ 𝑥𝑖𝑀𝑖

−1𝑦𝑖𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖
⌋ 𝑁𝑥𝑖𝑦𝑖𝑀𝑖

−1 +

ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
+|𝑁|𝑚𝑖

ξω𝑖

𝑚𝑖
|

𝑚𝑖

=

|
𝑥𝑖𝑦𝑖 |𝑀𝑖

−1 (⌊
𝑀𝑖

𝑚𝑖
⌋ 𝑀𝑖

−1 + ⌊
𝑁

𝑚𝑖
⌋ 𝑁)|

𝑚𝑖

+

|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + ξω𝑖
|𝑁|𝑚𝑖

𝑚𝑖
−1|

22𝑟

|

𝑚𝑖

, since

ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
+|𝑁|𝑚𝑖

ξω𝑖

𝑚𝑖
< 𝑚𝑖

2 + 𝑚𝑖 = (2𝑟 − δ𝑖)
2 + (2𝑟 − δ𝑖) =

22𝑟 + 2𝑟 + δ𝑖
2 − (2𝑟+1 + 1)δ𝑖 = 22𝑟 + (1 − 2δ𝑖)2𝑟 +

(δ𝑖
2 − δ𝑖) ≤ 22𝑟.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, "A method

for obtaining digital signatures and public-key

cryptosystems," Communications of the ACM, vol. 21,

pp. 120-126, 1978.

[2] M. O. Rabin, "Digitalized signatures and public-key

functions as intractable as factorization,"

Massachusetts Inst of Tech Cambridge Lab for

Computer Science1979.

[3] P. L. Montgomery, "Modular multiplication without

trial division," Mathematics of computation, vol. 44,

pp. 519-521, 1985.

[4] J.-C. Bajard, L. Imbert, P.-Y. Liardet, and Y. Teglia,

"Leak resistant arithmetic," in CHES, 2004, pp. 62-75.

[5] F. Gandino, F. Lamberti, G. Paravati, J.-C. Bajard, and

P. Montuschi, "An algorithmic and architectural study

on Montgomery exponentiation in RNS," IEEE

Transactions on Computers, vol. 61, pp. 1071-1083,

2012.

[6] A. R. Omondi and A. B. Premkumar, Residue number

systems: theory and implementation vol. 2: World

Scientific, 2007.

[7] S. Kawamura, M. Koike, F. Sano, and A. Shimbo,

"Cox-rower architecture for fast parallel montgomery

multiplication," in International Conference on the

Theory and Applications of Cryptographic Techniques,

2000, pp. 523-538.

[8] J.-C. Bajard and L. Imbert, "A full RNS

implementation of RSA," IEEE Transactions on

Computers, vol. 53, pp. 769-774, 2004.

[9] M. Scott, "Implementing cryptographic pairings,"

Lecture Notes in Computer Science, vol. 4575, p. 177,

2007.

[10] J.-C. Bajard and N. Merkiche, "Double level

Montgomery Cox-Rower architecture, new bounds," in

International Conference on Smart Card Research and

Advanced Applications, 2014, pp. 139-153.

[11] Z. Ahmadpour and G. Jaberipur, "Up to 8k-bit

Modular Montgomery Multiplication in Residue

Number Systems With Fast 16-bit Residue Channels,"

IEEE Transactions on Computers, vol. 71, pp. 1399-

1410, 2021.

