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Abstract— Montgomery modular multiplication (MMM) in 

residue number systems (RNS) uses a base extension (BE) 

technique. This is to avoid division, which is hard, slow and 

costly in RNS. It is somewhat less costly and faster than the 

reverse conversion, via Chinese remainder theorem (CRT) and 

reduction factor method. However, it is used one after the other, 

for each of the equally large bases. In this work, we modify the 

conventional RNS-MMM algorithm via replacing the two 

unparalleled BE undertakings with three parallel CRT-like 

operations with the same complexity, as BE. As for the reduction 

factors, we use a special case of the Kawamura’s algorithm that 

leads to definitive result. The proposed RNS-MMM method 

allows for squaring the working dynamic range, or halving the 

bit-width of the balanced residue channels. Moreover, the 

common practice of dynamically changing the working moduli 

set in security and crypto applications is less critical due to 

doubled size of the pool of available moduli. The proposed 

circuits are simulated, tested and synthesized via Synopsys 

Design Compiler on the TSMC 65-nm technology, to show 69% 

less delay and 28% less area-time-product at the cost of 14% 

more energy consumption, with respect to the most relevant 

reference work. 

Keywords— Montgomery modular multiplication, Residue 

number systems, Modular reduction factors, Base extension.  

I. INTRODUCTION 

Modular multiplication of large ≥ 1024-bit integers is the 
basic operation in several public-key cryptosystems (e.g., 
RSA [1], Rabin [2]). It is often realized via the hardware 
realization of the well-known Montgomery Modular 
Multiplication (MMM) algorithm [3]. 

MMM realization via residue number system (RNS) 
arithmetic leads to speed gain and low power dissipation, due 
to the parallel processing nature of residue channels. 
However, there are some critical issues in deciding the 
characteristic of the working RNS, as are enumerated below. 

1) Equal bit-widths 𝑟 of the working 𝑘-moduli RNS is 

desirable, since it generally leads to the optimizing property 

of speed-balance among the parallel residue channels.  

2) Crypto key-lengths of over 210 bits and the required 

counter side-channel attack strategies call for hundreds of co-

prime moduli to allow sufficient dynamism in the task of 

frequently changing the working moduli set [4]. 

3) The base extension (BE) technique is commonly used 

for avoiding the difficult, slow and costly division in the 

MMM.  

 

However, the requirement of employing two equally large 

moduli sets doubles the essential number of co-prime moduli, 

while the working dynamic range (DR) does not increase and 

equals that of one moduli set. 

4) Deciding on the values of 𝑘 and 𝑟 is a critical design 

issue, where smaller bit-width 𝑟, for speedup, results in more 

number of moduli 𝑘, which in turn can slow down the BE.   
To take utmost advantage of the available pool of equal 

bit-width moduli, getting around the necessity of utilizing two 
bases required by the BE technique, saves half of the moduli 
in favor of squaring the DR. That is how we were motivated 
to modify the conventional BE-based RNS-MMM algorithm, 
via replacing the two unparalleled applications of BE to three 
parallel operations whose complexities are compatible with 
that of the Chinese remainder theorem (CRT); hence hereafter 
referred to as CRT-like operations. Therefore, all the available 
moduli contribute to the enlargement of DR, where its range 
is actually squared. Otherwise, the bit-width of the balanced 
residue channels can be halved, for the same DR. On the other 
hand, the double sized moduli pool can be best used to further 
decrease the probability of successful side channel attacks. 
The simulation, test, and implementation results for the 
proposed algorithm and the most relevant previous work [5] 
show advantages in speedup, and area-time (AT) product 
reduction at the cost of more energy consumption. 

In the rest of this paper, some background on MMM 
definition and RNS essentials are given in Section 2. Section 
3 contains the proposed modified RNS-MMM and the 
definitive reduction factor derivation. The proposed 
architecture is provided for in Section 4, which is evaluated in 
Section 5, and its figures of merit are compared with the best 
previous relevant work. We conclude the paper in Section 6. 

II. BACKGROUND 

The Modular multiplication |𝑋 × 𝑌|𝑁 represents the main 
operation in most public-key cryptographic algorithms (e.g., 
[1], [2]). The direct realization of |𝑋 × 𝑌|𝑁  (𝑋, 𝑌 ∈ [0, 𝑁 −
1] ) requires huge hardware resources, since the working 
modulo 𝑁  is extremely large. Therefore, the well-known 
Montgomery modular multiplication (MMM) integer function 
𝑀𝑀𝑀(𝑋, 𝑌), as is described by (1), is employed to obtain the 
modular product |𝑋 × 𝑌|𝑁 via (2). 

𝑍 = 𝑀𝑀𝑀(𝑋, 𝑌) = |𝑋𝑌Γ−1|𝑁 = (𝑋𝑌 + 𝑁|𝑁𝑋𝑌|
Γ

) /Γ (1)  

|𝑋 × 𝑌|𝑁 = 𝑀𝑀𝑀(𝑍, |Γ2|𝑁) (2)  

The Montgomery factor Γ and its multiplicative inverse 

Γ−1 , satisfy Γ > 𝑁 and |ΓΓ−1|𝑁 = 1, respectively, and 𝑁 is 

the multiplicative and additive inverse of 𝑁 , as 𝑁 =
|(−𝑁)−1|Γ. A verifying proof of (2) is given in Appendix 1. 
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To ease the understanding of the RNS realization of the 
latter (see Section 3.1), we briefly describe the RNS essentials, 
as follows. 

A. RNS Essentials 

A 𝑘-moduli RNS is a non-positional number system where 
a number 𝑋  is represented by a 𝑘 -tuple residue 
(𝑥1, 𝑥2, … , 𝑥𝑘) , with respect to 𝑘 -tuple moduli 
(𝑚1, 𝑚2, … , 𝑚𝑘) . A residue 𝑥𝑖 , denoted as 𝑥𝑖 = |𝑋|𝑚𝑖

, is 

obtained by extracting the integer remainder of 
𝑋

𝑚𝑖
, for 1≤ 𝑖 ≤

𝑘. The cardinality of numbers that are uniquely representable 
by the RNS in hand, is called dynamic range (DR), which is 
maximized by securing mutual primality between the 𝑘 
moduli, and thus is equal to 𝑀 = 𝑚1 … × 𝑚𝑘 . Addition, 
subtraction, and multiplication are performed faster through 𝑘 
parallel residue channels, where the corresponding residue 
operands are smaller than original binary operands. However, 
division and comparison are considered as difficult (i.e., slow 
and costly) operations in RNS, such that often they are 
performed via reverse conversion of RNS operands to binary, 
performing wide word binary division or comparison, and 
forward conversion of the quotient and remainder (if needed) 
to RNS equivalents [6]. 

The CRT is often used for the aforementioned reverse 

conversion, as 𝑋 = |∑ |𝑥𝑗𝑀𝑗
−1|

𝑚𝑗
𝑀𝑗

𝑘
𝑗=1 |

𝑀

, where 𝑀𝑗 =
𝑀

𝑚𝑗
, 

𝑀𝑗
−1 is the multiplicative inverse of 𝑀𝑗 with respect to 𝑚𝑗. A 

common way for the latter modulo-𝑀 reduction, is described 
by (3). The reduction factor 0 ≤ γ𝑋 < 𝑘  [7] can be obtained 
via an implementation method that is explained in Section 3.2. 

𝑋 = �̂� − 𝛾𝑋𝑀, �̂� = ∑|𝑥𝑗𝑀𝑗
−1|

𝑚𝑗
𝑀𝑗

𝑘

𝑗=1

, 

𝛾𝑋 = ⌊

∑ |𝑥𝑗𝑀𝑗
−1|

𝑚𝑗
𝑀𝑗  𝑘

𝑗=1

𝑀
⌋ 

(3)  

III. PROPOSED ALGORITHM 

The conventional RNS MMM algorithm [7] relies on two 
consecutive applications of the BE technique. The BEs 
correspond to two non-overlapping moduli sets, whose DRs 
are greater than 𝑁 . Such hugely high DR requires large 
number of moduli with reasonable bit-width of the 
corresponding residue channels in favor of speeding up the 
MMM. However, the larger the moduli set, the longer the BE 
delay and the more its cost. Nevertheless, the proposed new 
RNS modular multiplication algorithm, as is described in the 
rest of this Section, consumes the moduli of both bases as one 
base, and performs three CRT-like operations in parallel; 
hence one or more of the following possibilities can be in 
order: 

1) Speedup via reducing the bit-widths to half, thus 

doubling the number of moduli, for the same working DR.  

2) More dynamism in moduli set selection to reduce the 

probability of successful side-channel attacks. 

3) Keeping the same bit-widths, but reducing the total 

number of moduli to half, for faster CRT-like operations.   

A. New RNS implementation of (1) 

Let the employed single RNS base be denoted as 𝛣 =
{𝑚1, 𝑚2, … , 𝑚𝑘} with 𝑘 main residue channels of equal width 
𝑟 . This will be augmented with a particular channel 
corresponding to modulo 𝑚0, whose utility will be explained 
in the sequel. 

Recalling (1), the Montgomery factor Γ  is set, as usual 
(e.g., [7], [8]), to the DR 𝑀 = 𝑚1 × 𝑚2 … × 𝑚𝑘  (i.e., Γ =
𝑀 ). Therefore, 𝑀 > 𝑁  and the balanced bit-width 𝑟  must 
satisfy 𝑘 × 𝑟 ≥ 𝑛 = ⌈log2 𝑁⌉. 

At the outset, recalling (1), the integer 𝑍 = |
𝑋𝑌+𝑁|𝑁𝑋𝑌|𝑀

𝑀
|

𝑁
  

can be described as in (4), where σ ∈ {0,1} (see Appendix 2, 
for a proof). 

𝑍 = �̂� − σ𝑁, �̂� =
𝑋𝑌

𝑀
+

𝑁|𝑁𝑋𝑌|
𝑀

𝑀
 (4)  

Recalling (3), and similar equations for 𝑌, we decompose 

�̂� to 𝑍1 and 𝑍2, as follows. 

𝑍1 =
𝑋𝑌

𝑀
=

�̂��̂�

𝑀
− γ𝑋�̂�  − γ𝑌�̂�  +  γ𝑋𝑀γ𝑌,  and 𝑍2 =

𝑁Ω

𝑀
=

𝑁Ω̂

𝑀
− γΩ𝑁 , where Ω = |𝑁𝑋𝑌|

𝑀
= Ω̂ − γΩ𝑀 , Ω̂ =

∑ |ω𝑗𝑀𝑗
−1|

𝑚𝑗
𝑀𝑗

𝑘
𝑗=1 , ω𝑖 = |Ω|𝑚𝑖

. 

𝑧�̂�, can be obtained in terms of 𝑥𝑖 = |𝑋|𝑚𝑖
= |�̂�|

𝑚𝑖
, 𝑦𝑖 =

|𝑌|𝑚𝑖
= |�̂�|

𝑚𝑖
, and ω𝑖 = |Ω|𝑚𝑖

= ||𝑁|
𝑚𝑖

𝑥𝑖𝑦𝑖|
𝑚𝑖

, as follows. 

𝑧�̂� = |�̂�|
𝑚𝑖

= |𝑍1 + 𝑍2|𝑚𝑖
=  

|
�̂��̂�

𝑀
−  γ𝑋�̂�  − γ𝑌�̂�  + γ𝑋𝑀γ𝑌 +

𝑁Ω̂

𝑀
− γΩ𝑁|

𝑚𝑖

=

|
�̂��̂�+𝑁Ω̂

𝑀
− ( γ𝑋�̂� + γ𝑌�̂� + γΩ𝑁)|

𝑚𝑖

. 

Let  𝐹𝑖 = |
�̂��̂�+ 𝑁Ω̂

𝑀
|

𝑚𝑖

, and 𝐺𝑖 = |γ𝑋�̂� + γ𝑌�̂� + γΩ𝑁|
𝑚𝑖

, 

which leads to �̂�𝑖 = |𝐹𝑖 − 𝐺𝑖|𝑚𝑖
. 

Recalling the integer nature of �̂�, so must be the fraction 
𝐹𝑖 . The corresponding integer expression is derived below, 

using six variables defined as ξ𝑥𝑖
= |𝑥𝑖𝑀𝑖

−1|𝑚𝑖
, 𝑋𝑖

′ = �̂� −

ξ𝑥𝑖
𝑀𝑖 = ∑ ξ𝑥𝑗

𝑀𝑗
𝑘
𝑗=1
𝑗≠𝑖

, and similar definitions for ξ𝑦𝑖
,𝑌𝑖

′ , ξω𝑖
, 

and Ω𝑖
′ . Moreover, six similar ones are defined with the index 

𝑗. Also we use the following identities: 

|
𝑋𝑖

′

𝑀
|

𝑚𝑖

= |∑ ξ𝑥𝑗
𝑚𝑗

−1𝑘
𝑗=1
𝑗≠𝑖

|

𝑚𝑖

. Likewise, |
𝑌𝑖

′

𝑀
|

𝑚𝑖

=

|∑ ξ𝑦𝑗
𝑚𝑗

−1𝑘
𝑗=1
𝑗≠𝑖

|

𝑚𝑖

, and |
Ω𝑖

′

𝑀
|

𝑚𝑖

= |∑ ξω𝑗
𝑚𝑗

−1𝑘
𝑗=1
𝑗≠𝑖

|

𝑚𝑖

. 

𝐹𝑖 = |
(𝑋𝑖

′+ξ𝑥𝑖
𝑀𝑖)(𝑌𝑖

′+ξ𝑦𝑖
𝑀𝑖)+𝑁(Ω𝑖

′+ξω𝑖
𝑀𝑖)

𝑀
|

𝑚𝑖

=

|
𝑋𝑖

′𝑌𝑖
′+ξ𝑥𝑖

𝑀𝑖𝑌𝑖
′+ξ𝑦𝑖

𝑀𝑖𝑋𝑖
′+𝑁Ω𝑖

′

𝑀
+

ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

𝑀𝑖+𝑁ξω𝑖
𝑀𝑖

𝑀
|

𝑚𝑖

  



Let 𝐹𝑖1
= |

𝑋𝑖
′𝑌𝑖

′+ξ𝑥𝑖
𝑀𝑖𝑌𝑖

′+ξ𝑦𝑖
𝑀𝑖𝑋𝑖

′+𝑁Ω𝑖
′

𝑀
|

𝑚𝑖

, and 

𝐹𝑖2
= |

ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

𝑀𝑖+𝑁ξω𝑖
𝑀𝑖

𝑀
|

𝑚𝑖

. 

Appendix 3 provides for a proof that 𝐹𝑖2
 yields an integer. 

Therefore, 𝐹𝑖1
 must also yield an integer. The corresponding 

integer expression for 𝐹𝑖2
 is given as in (5), and that of 𝐹𝑖1

 is 

derived below. Note that for notational brevity sake the plain 

Σ denotes ∑ ,𝑘
𝑗=1
𝑗≠𝑖

 unless otherwise specified. 

𝐹𝑖2
= |

|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + ξω𝑖
|𝑁|𝑚𝑖

𝑚𝑖
−1|

22𝑟

+𝑥𝑖𝑦𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖

⌋ 𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖

⌋ 𝑁)|
𝑚𝑖

|

𝑚𝑖

 
(5)  

𝐹𝑖1
= |

Σ(ξ𝑥𝑗
𝑀𝑗)Σ(ξ𝑦𝑗

𝑀𝑗)+𝑥𝑖Σ(ξ𝑦𝑗
𝑀𝑗)+𝑦𝑖Σ(ξ𝑥𝑗

𝑀𝑗)+𝑁Σ(ξω𝑗
𝑀𝑗)

𝑀
|

𝑚𝑖

  

= |𝑥𝑖Σ (ξ𝑦𝑗
𝑚𝑗

−1) + 𝑦𝑖Σ (ξ𝑥𝑗
𝑚𝑗

−1) + 𝑁Σ (ξω𝑗
𝑚𝑗

−1)|
𝑚𝑖

 

since  |Σ (ξ𝑥𝑗
𝑀𝑗)|

𝑚𝑖

= 0, due to 𝑗 ≠ 𝑖. 

Consequently, 

𝑧�̂� = 

|

|

𝑥𝑖Σ (ξ𝑦𝑗
𝑚𝑗

−1) + 𝑦𝑖Σ (ξ𝑥𝑗
𝑚𝑗

−1) + 𝑁Σ (ξω𝑗
𝑚𝑗

−1)

+|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + ξω𝑖
|𝑁|𝑚𝑖

𝑚𝑖
−1|

22𝑟

+𝑥𝑖𝑦𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖

⌋ 𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖

⌋ 𝑁)|
𝑚𝑖

−γ𝑌𝑥𝑖 − γ𝑋𝑦𝑖 − γΩ𝑁

|

|

𝑚𝑖

 
(6)  

B. Derivation of the reduction factors 

Equation set (7) is a reproduction of (3), where |𝑥𝑖𝑀𝑖
−1|𝑚𝑖

 

is replaced by ξ𝑥𝑖
, and 𝑀𝑖/𝑀 , by 1/𝑚𝑖 , with similar 

expressions for 𝑌 and Ω. 

γ𝑋 = ⌊∑
ξ𝑥𝑖

𝑚𝑖

𝑘
𝑖=1 ⌋ , γ𝑌 = ⌊∑

ξ𝑦𝑖

𝑚𝑖

𝑘
𝑖=1 ⌋ , γΩ = ⌊∑

ξΩ𝑖

𝑚𝑖

𝑘
𝑖=1 ⌋  (7)  

Following [7], the equations for reduction factors γ𝑋 and 
γ𝑌, can be elaborated on to lead to the definitive expressions 
in (12), where 𝑚𝑖 = 2𝑟 − δ𝑖 , without loss of generality. 
However, γΩ will be handled separately in Section 3.2.1. 

Let γ𝑋
+ = ∑

ξ𝑥𝑖

𝑚𝑖

𝑘
𝑖=1 , which given that 

ξ𝑥𝑖

𝑚𝑖
=

ξ𝑥𝑖

2𝑟 +
ξ𝑥𝑖

𝑚𝑖
−

ξ𝑥𝑖

2𝑟 =

ξ𝑥𝑖

2𝑟 +
2𝑟ξ𝑥𝑖

−𝑚𝑖ξ𝑥𝑖

2𝑟𝑚𝑖
=

ξ𝑥𝑖

2𝑟 +
ξ𝑥𝑖

δ𝑖

2𝑟𝑚𝑖 
, can be decomposed to an easy 

to implement part γ𝑋
𝑒 =

∑ ξ𝑥𝑖
𝑘
𝑖=1

2𝑟  and a difficult part γ𝑋
𝑑 =

∑
ξ𝑥𝑖

δ𝑖

2𝑟𝑚𝑖 

𝑘
𝑖=1 , as γ𝑋

+ = γ𝑋
𝑒 + γ𝑋

𝑑 . 

In the sequel we show that, via some restrictions and 
conditions, we can simplify the reduction factor equation as 

γ𝑋 = ⌊γ𝑋
𝑒 +

1

2
⌋; hence no need to obtain γ𝑋

𝑑 . For example, (8) 

and (9) provide for one pair of sufficient conditions, since they 
lead to (10), as follows. 

γ𝑋 ≤ γ𝑋
+ = γ𝑋

𝑒 + γ𝑋
𝑑 < γ𝑋 +

1

2
⟹ γ𝑋 +

1

2
− γ𝑋

𝑑 ≤ γ𝑋
𝑒 +

1

2
< γ𝑋 + 1 − γ𝑋

𝑑 , per (8), and γ𝑋 < γ𝑋 +
1

2
− γ𝑋

𝑑 ≤ γ𝑋
𝑒 +

1

2
<

γ𝑋 + 1, per (9). 

γ𝑋
+ < γ𝑋 +

1

2
 (8)  

γ𝑋
𝑑 <

1

2
  (9)  

γ𝑋 < γ𝑋
𝑒 +

1

2
< γ𝑋 + 1  (10)  

For (8) to hold, the following is obtained from (3). 

𝑋 + γ𝑋𝑀 = ∑ ξ𝑥𝑖
𝑀𝑖

𝑘
𝑖=1 ⟹

𝑋

𝑀
+ γ𝑋 = ∑

ξ𝑥𝑖

𝑚𝑖

𝑘
𝑖=1 = γ𝑋

+ <

γ𝑋 +
1

2
⟹

𝑋

𝑀
<

1

2
, which is satisfied if 𝑀 > 4𝑁 , since 𝑋 <

2𝑁 , must hold. On the other hand, let δ𝑚𝑎𝑥  denote the 
maximum δ𝑖-value, which leads to the following, where δ1 =
δ𝑚𝑎𝑥 , δ2 = δ𝑚𝑎𝑥 − 2 , … δ𝑖 = δ𝑚𝑎𝑥 − 2(𝑖 − 1) , … δ𝑘 =
δ𝑚𝑎𝑥 − 2(𝑘 − 1). 

γ𝑋
𝑑 = ∑

ξ𝑥𝑖
δ𝑖

2𝑟𝑚𝑖 

𝑘
𝑖=1 < ∑

δ𝑖

2𝑟 

𝑘
𝑖=1 < ∑ (

δ𝑚𝑎𝑥−(2𝑖−2)

2𝑟 )𝑘
𝑖=1 =

𝑘(δ𝑚𝑎𝑥−(𝑘−1))

2𝑟 . Therefore, (9) holds if 
𝑘(δ𝑚𝑎𝑥−(𝑘−1))

2𝑟 <
1

2
, 

which leads to (11). 

δ𝑚𝑎𝑥 <
2𝑟−1

𝑘
+ (𝑘 − 1)  (11)  

Consequently, (12) yields the reduction factors γ𝑋 and γ𝑌, 
if 𝑀 > 4𝑁, and δ𝑖 values satisfy (11). 

γ𝑋 = ⌊
1

2
+

∑ ξ𝑥𝑖
𝑘
𝑖=1

2𝑟 ⌋, γ𝑌 = ⌊
1

2
+

∑ ξ𝑦𝑖
𝑘
𝑖=1

2𝑟 ⌋  (12)  

1) Derivation of 𝛾𝛺 

As in the 𝑋  case, 
Ω

𝑀
+ γΩ = γΩ

+ = ∑
ξ𝜔𝑖

𝑚𝑖

𝑘
𝑖=1 . However, 

unlike the case of 𝑋, where 
𝑋

𝑀
<

1

2
, we have Ω = |𝑁𝑋𝑌|

𝑀
<

𝑀 ⟹
Ω

𝑀
∈ [0,1), which leads to (13), and furthermore to (14), 

as follows. 

γΩ ≤ γΩ
+ = γΩ +

Ω

𝑀
< γΩ + 1  (13)  

γΩ ≤ γΩ
+ = γΩ

𝑒 + γΩ
𝑑 < γΩ + 1 ⟹ γΩ − γΩ

𝑑 ≤ γΩ
𝑒 <

γΩ + 1 − γΩ
𝑑 , per (13), and γΩ < γΩ +

1

2
− γΩ

𝑑 ≤ γΩ
𝑒 +

1

2
<

γΩ + 2, per applying (9), for γΩ
𝑑 . Therefore, 

𝛾𝛺 = ⌊𝛾𝛺
𝑒 +

1

2
⌋ − 𝛼, 

𝛼 = {
0 𝑖𝑓 𝛾𝛺

𝑒 +
1

2
< 𝛾𝛺 + 1

1 𝑖𝑓 𝛾𝛺
𝑒 +

1

2
≥ 𝛾𝛺 + 1

 
(14)  

Replacing in (6) for the three reduction factors, leads to 

𝑧�̂� = |𝑧𝑖
′̂ + |α𝑁|𝑚𝑖

|
𝑚𝑖

, where the definitive residue 𝑧𝑖
′̂ =

|𝑧�̂� − |α𝑁|𝑚𝑖
|

𝑚𝑖
= 



|

|

𝑥𝑖Σ (ξ𝑦𝑗
𝑚𝑗

−1) + 𝑦𝑖Σ (ξ𝑥𝑗
𝑚𝑗

−1) + 𝑁Σ (ξω𝑗
𝑚𝑗

−1)

+|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + |𝑁|𝑚𝑖
ξω𝑖

𝑚𝑖
−1|

22𝑟

+𝑥𝑖𝑦𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖

⌋ 𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖

⌋ 𝑁)|
𝑚𝑖

− ⌊γ𝑌
𝑒 +

1

2
⌋ 𝑥𝑖 − ⌊γ𝑋

𝑒 +
1

2
⌋ 𝑦𝑖 − ⌊γΩ

𝑒 +
1

2
⌋ 𝑁

|

|

𝑚𝑖

 

On the other hand, recalling (4), �̂� = 𝑍 + σ𝑁 ⟹ 𝑧�̂� =

|𝑧𝑖 + |σ𝑁|𝑚𝑖
|

𝑚𝑖
 where 0 ≤  𝑍 = |�̂�|

𝑁
< 𝑁. Consequently, 

𝑧𝑖
′̂ = ||𝑧𝑖 + |σ𝑁|𝑚𝑖

|
𝑚𝑖

− |α𝑁|𝑚𝑖
|

𝑚𝑖

=  

||𝑍|𝑚𝑖
+ |σ𝑁|𝑚𝑖

− |α𝑁|𝑚𝑖
|

𝑚𝑖
⟹  

𝑧𝑖
′̂ = |𝑍 + σ𝑁 − α𝑁|𝑚𝑖

⟹ 𝑍′̂ = 𝑍 + (σ − α)𝑁 ⟹

−𝑁 ≤ 𝑍′̂ < 2𝑁, since σ, α ∈ {0,1} ⟹ σ − α ∈ {−1,0,1}. To 

fix the undesired negative interval for 𝑍′̂ , let 𝑍′̂+
= 𝑍′̂ +

𝑁 ⟹ 0 ≤ 𝑍′̂+
< 3𝑁. Since this result is used as the input for 

the next MMM, we need to allow the input range to be as 0 ≤

𝑋, 𝑌 < 3𝑁. Then, 𝑀 > 6𝑁 satisfies the conditions 
𝑋

𝑀
<

1

2
 and 

𝑌

𝑀
<

1

2
 that was required for (12). However, to extend the 

dynamic range to 6𝑁, we add a constant modulo 𝑚0 = 8, as 
the sole power-of-two modulo, which increases the DR to 8 

times the original ∏ (2𝑟 − δ𝑖)
𝑘
𝑖=1 , where δ𝑖 > 0. 

Note that enforcing 𝑍′̂+
 in the subsequent MMM 

operations leads to correct results since, recalling (1), 𝑍 =
𝑀𝑀𝑀(𝑋, 𝑌) = |𝑋𝑌𝑀−1|𝑁 ⟹  

𝑀𝑀𝑀 (𝑍′̂+
, |𝑀2|𝑁) = |𝑍′̂+

|𝑀2|𝑁|𝑀−1|𝑁|
𝑁

= 

|𝑍′̂+
𝑀2𝑀−1|

𝑁
= |𝑍′̂+

𝑀|
𝑁

= |(𝑍 + (𝜎 − 𝛼 + 1)𝑁)𝑀|𝑁 

= |𝑍𝑀|𝑁 = ||𝑋𝑌𝑀−1|𝑁𝑀|𝑁 = |𝑋𝑌𝑀−1𝑀|𝑁 = |𝑋 × 𝑌|𝑁 . 

To obtain 𝑍′̂+
, we use (15) to find its residues 𝑧𝑖

′̂
+

=

|𝑍′̂+
|

𝑚𝑖

= |𝑧𝑖
′̂ + |𝑁|𝑚𝑖

|
𝑚𝑖

. 

𝑧𝑖
′̂
+

= |𝑧𝑖
′̂ + 𝑁|

𝑚𝑖

= 

|

|

𝑥𝑖Σ (ξ𝑦𝑗
𝑚𝑗

−1) + 𝑦𝑖Σ (ξ𝑥𝑗
𝑚𝑗

−1) + 𝑁Σ (ξω𝑗
𝑚𝑗

−1)

+|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + |𝑁|𝑚𝑖
ξω𝑖

𝑚𝑖
−1|

22𝑟

+𝑥𝑖𝑦𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖

⌋ 𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖

⌋ 𝑁)|
𝑚𝑖

− ⌊γ𝑌
𝑒 +

1

2
⌋ 𝑥𝑖 − ⌊γ𝑋

𝑒 +
1

2
⌋ 𝑦𝑖 − ⌊γΩ

𝑒 +
1

2
⌋ 𝑁 + 𝑁

|

|

𝑚𝑖

 
(15)  

 

Algorithm 1 describes the steps of implementation of (15), 
whose circuit realization is discussed in Section 4. Note that 
the subtrahends in Step 4 represent the reduction factors in 
(15).  

Algorithm 1 (New RNS-MMM) 

Inputs: 𝑚𝑖, 𝑥𝑖, 𝑦𝑖 , 0 ≤ 𝑖 ≤ 𝑘 

Outputs: 𝑧𝑖
′̂
+

, 0 ≤ 𝑖 ≤ 𝑘 

1) For 𝑖 = 0 to 𝑘 do par 

𝑤𝑖 = |𝑥𝑖𝑦𝑖|𝑚𝑖
; ξ𝑥𝑖

= |𝑥𝑖𝑀𝑖
−1|𝑚𝑖

; ξ𝑦𝑖
= |𝑦𝑖𝑀𝑖

−1|𝑚𝑖
;  

2) For 𝑖 = 0 to 𝑘 do par 

ξ𝜔𝑖
= |𝑤𝑖|�̂�𝑀𝑖

−1|
𝑚𝑖

|
𝑚𝑖

;  

𝑢𝑖 = |𝑤𝑖 |𝑀𝑖
−1 (⌊

𝑀𝑖

𝑚𝑖
⌋ 𝑀𝑖

−1 + ⌊
𝑁

𝑚𝑖
⌋ 𝑁)|

𝑚𝑖

|
𝑚𝑖

;  

3) For 𝑖 = 0 to 𝑘 do par 

𝑠𝑖 = ||ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + ξ𝜔𝑖
|𝑁|𝑚𝑖

𝑚𝑖
−1|

22𝑟|
𝑚𝑖

; 

4) For 𝑖 = 0 to 𝑘 do par 

𝑝𝑥𝑖
= (∑ ξ𝑥𝑗

𝑚𝑗
−1𝑘

𝑗=0,𝑗≠𝑖 ) − ⌊γ𝑋
𝑒 +

1

2
⌋;  

𝑝𝑦𝑖
= (∑ ξ𝑦𝑗

𝑚𝑗
−1𝑘

𝑗=0,𝑗≠𝑖 ) − ⌊γ𝑌
𝑒 +

1

2
⌋;  

𝑝𝜔𝑖
= (∑ ξ𝜔𝑗

𝑚𝑗
−1𝑘

𝑗=0,𝑗≠𝑖 ) − ⌊γΩ
𝑒 +

1

2
⌋; 

5) For 𝑖 = 0 to 𝑘 do par 

𝑧𝑖
′̂
+

= |
𝑁 + 𝑥𝑖|𝑝𝑦𝑖

|
𝑚𝑖

+ 𝑦𝑖|𝑝𝑥𝑖
|

𝑚𝑖
+

|𝑁|𝑚𝑖
|𝑝𝜔𝑖

|
𝑚𝑖

+ 𝑢𝑖 + 𝑠𝑖

|

𝑚𝑖

;∎  

IV. IMPLEMENTATION OF ALGORITHM 1 

The main and most complex step of Algorithm 1 is the 
Step 4, which is mainly implemented by the architecture 
depicted by Fig. 1. Each of the three parallel expressions for 
𝑝𝑥𝑖

, 𝑝𝑦𝑖
, and 𝑝𝜔𝑖

 consist of a main multi-operand MAC 

(MOMAC) and a rounded reduction factor, which is obtained 
in parallel (not shown in Fig. 1). Intermediate registers are 
utilized as well to store the output of the carry-save 
multiplication and minimize clock cycle delays. Each Σ, in the 
Step 4 is obtained via the lazy reduction technique [9]. The 
multipliers are non-modular and produce 2𝑟 -bit products, 
where the final multiply-accumulate (MAC) results undergo a 

forward conversion, for deriving |𝑝𝑦𝑖
|

𝑚𝑖
, |𝑝𝑥𝑖

|
𝑚𝑖

, and 

|𝑝𝜔𝑖
|

𝑚𝑖
. The generated 22𝑟-weighted carries are accumulated 

to be δ𝑖
2-folded before entering the forward convertor, since 

|22𝑟𝑐|2𝑟−δ𝑖
= |δ𝑖

2𝑐|2𝑟−𝛿𝑖
. 

Derivation of the aforementioned Σs, in the channel 𝑖 , 

should be preceded with attaining ξ𝑥𝑗
, ξ𝑦𝑗

, and ξ𝜔𝑗
 values, in 

other channels. To do this, we use the second level MMM, 
twice, with the Montgomery factor Γ = 2𝑟  [10], as in (16), 

which leads to the correct ξ𝑥𝑗
, similarly for ξ𝑦𝑗

, and ξ𝜔𝑗
. 

 

ξ𝑥𝑗
=

(𝑥𝑗|𝑀𝑗
−1|

𝑚𝑗
)+𝑚𝑗|(−𝑚𝑖)−1(𝑥𝑗|𝑀𝑗

−1|
𝑚𝑗

)|

2𝑟

2𝑟   (16)  

 

 



 
* FC: forward convertor 

Fig 1. Three parallel MOMAC implementing (15) 

V. COMPARISON AND EVALUATION 

As it is common in the analytical evaluation of MMM and 
in crypto algorithms, in general, we discuss the performance 
of the proposed MMM in terms of number of the required 
multiplications. However, the overall architecture is 
synthesized via the Synopsys Design Compiler, and the results 
compiled in Table 2. 

A. Analytical evaluation 

Table 1 contains the number of required binary 
multiplications for the Steps of Algorithm 1. The superiority 
of this work over the best previous one due to [5], is evident 
via comparing the bottom two rows of Table 1. Equal cost and 
delay for multipliers of both works are assumed. The reported 
pipelined cycle counts of [5] is 2𝑘 + 22, which is twice more 
vs the proposed design. However, for a more fair comparison, 
the corresponding figure in Table 1 regards the un-pipelined 
design, which is 6X. Nevertheless, the cost of our work is 50% 
more, leading to expected 3X cost-speed product. 

B. Synthesis results 

The VHDL codes for designs of the previous most 
efficient RNS-MMM [5], and the proposed method are 
mapped into the Synopsys Design Compiler on the TSMC 65 
nm standard CMOS library. This was done by enforcing 
frequency constraints during synthesis. 

The results are compiled in Table 2, where some properties 
and advantages of the proposed work versus that of [5] 
follows.  

 

TABLE 1 - # OF MULTIPLICATIONS REQUIRED FOR IMPLEMENTATION OF (15) 

Step 
# of multiplications 

CDP+ Total 

1 3 3 ×  3 = 9 

2 3 3 + 3 = 6 

3 2 3 + 1 = 4 

4 𝑘 3 × 3𝑘 

5 3 5 

Grand Total 𝑘 + 11 𝑘(9𝑘 + 24) 

Ref. [5] 6𝑘 + 15 𝑘(6𝑘 + 15) 
+ Critical delay path 

 The MMM speed grows, as the channel width 
increases, since the number of channels decreases for 
the same key-length. 

 62%, 66%, and 69% delay reductions, for channel 
widths 𝑟 = 24, 32, and 64, respectively, versus 32 of 
[5]. 

 6% less energy consumption for channel width 𝑟 =
24. 

 39% less area consumption per channel width 𝑟 = 24, 
and 18% less total area consumption (i.e., including the 
reduction factors). 

 69%, 42%, and 28% reduced area-time (AT) product, 
for 𝑟 = 24, 𝑟 = 32, and 𝑟 = 64, respectively. 

 Significant reduction in the probability of successful 
side channel attacks due to increase in the number of 
available moduli. 

Forward convertor 

Carry-Save 

multiplier 

Register 

Register 

CS Accumulator Inc. 

ξ𝜔𝑗
 𝑚𝑗

−1 

Carry-Save 

multiplier 

Register 

Register 

CS Accumulator Inc. 

ξ𝑦𝑗
 𝑚𝑗

−1 

Carry-Save 

multiplier 

Register 

Register 

CS Accumulator Inc. 

ξ𝑥𝑗
 𝑚𝑗

−1 

Register 

file 

Accumulator 

Register 

𝑧𝑖
′̂
+

 

 

FC of Step 5 FC of Step 5 FC* of Step 5 

Register 

Reduction factor 

Register 

Reduction factor 

Register 

Reduction factor 



TABLE 2 - SYNTHESIS RESULT OF THE SINGLE BASE MODULAR MULTIPLICATION IN COMPARISON WITH THE AUTHOR'S PREVIOUS WORK AND THE MOST 

SIGNIFICANT PREVIOUS WORKS 

Design 

Size of 

the 

moduli 

pool 

Per residue channel 

𝒓 𝒌 

# of 

clock 

cycle 

Clock 

cycle 

time 

Probability 

Of successful 

attacks 

𝒏 
𝑴𝑴𝑴 Delay 

(ns) 

AT 

(𝒎𝒔 × 𝒎𝒎𝟐) 

PDP 

(𝒎𝒔 × 𝒎𝑾) 
Area 

(𝒎𝒎𝟐) 

Power 

(𝒎𝑾) 

Single Base 

3 parallel 

MOMAC 

1981 0.048 31.8 24 
43 75 

0.76 
2−294 1024 57 0.118 0.078 

86 118 2−506 2048 90 0.374 0.246 

384000 0.135 62.3 32 
32 64 

0.79 
2−369 1024 51 0.221 0.102 

64 96 2−678 2048 76 0.660 0.303 

> 106 0.364 127.9 64 
16 48 

0.97 
> 2−274 1024 47 0.274 0.096 

32 64 > 2−520 2048 62 0.723 0.253 

[5] 251 0.079 17.4 32 32 80 1.86 2−134 1024 149 0.380 0.083 

Note that [5] provides for only one channel bit-width 𝑟 = 32, 
but with two different moduli selection. The smaller moduli 

set regards moduli of the form 232 − (2ℎ ± 1), which leads to 
251 co-prime moduli. However, the moduli of the form 232 −
δ, with less restriction on δ, as δ < 215, provides for 4782 co-
prime moduli. Nevertheless, this one is not included in the 
comparison set, since the corresponding residue channels 
perform slower than those of the smaller moduli set.  

On the other hand, recalling (11), the proposed MMM 
imposes less restriction on moduli selection, besides co-

primality. For example for 𝑟 = 32 , δ ≤
231

32
+ 31 = 226 +

31 , leading to 384000 co-prime moduli, out of which 

(384000
32

) ≈ 10144  moduli sets of size 32 are dynamically 

selected. Moreover, the performance of all the corresponding 
residue channels are based on deferred end-around carry 
scheme of [11]. 

VI. CONCLUSION 

The conventional Montgomery modular multiplication in 
residue number system relies on two CRT-like operations with 
two non-overlapping moduli sets. The second operation 
depends on the result of the first one thus no time overlap is 
possible in the course of their executions. 

The proposed RNS-MMM implementation uses three 
parallel CRT-like operations, all on the same moduli set; 
hence it offers faster Montgomery product generation. Also it 
frees the second base in favor of doubling the size of moduli 
pool. This, in turn, increases the number of choices for 
dynamic switching between the working moduli set; hence 
reducing the probability of successful side channel attacks in 
the cryptosystem that perform modular exponentiation based 
on MMM. 

The proposed RNS-MMM algorithm enjoys the definitive 
derivation of the reduction factors, which is achieved via 
extending the value of Montgomery factor (i.e., Γ = 𝑀) to 
over six times the value of Montgomery modulo 𝑁 (i.e., Γ =
𝑀 > 6𝑁 ). This is actually undertaken via augmenting the 
moduli-set {𝑚1 … , 𝑚𝑘} with 𝑚0 = 8. 

The best results regarding the proposed MMM scheme 
occurs for the channel width  𝑟 = 24, and key length 𝑛 =
1024  with over 60% speedup, nearly 20% less area cost, and 
6% lower energy consumption, in comparison to the best 
previous relevant work due to [5]. 

 
 
 
 

VII. APPENDICES 

Appendix 1 (Proof for double application of MMM) 

Rewriting (2), as |𝑋 × 𝑌|𝑁 = 𝑀𝑀𝑀(𝑀𝑀𝑀(𝑋, 𝑌), |Γ2|𝑁) , 

and twice application of 𝑀𝑀𝑀(𝑋, 𝑌) = |𝑋𝑌Γ−1|𝑁 , as 

follows, provides for the desired verification. 

𝑀𝑀𝑀(𝑀𝑀𝑀(𝑋, 𝑌), |Γ2|𝑁) = 

𝑀𝑀𝑀(|𝑋𝑌(Γ−1)|𝑁 , |Γ2|𝑁) = 

||𝑋𝑌(Γ−1)|𝑁 × |Γ2|𝑁 × (Γ−1)|𝑁 = 

||𝑋𝑌(Γ−1)|𝑁 × |Γ|𝑁|𝑁 = 𝑍 

Appendix 2 (Proof of σ ∈ {0,1} in (4)) 

Recalling (1) and (4), proof of σ ∈ {0,1}  in 𝑍 =

|
𝑋𝑌+𝑁|𝑁𝑋𝑌|𝑀

𝑀
|

𝑁
=

𝑋𝑌+𝑁|𝑁𝑋𝑌|𝑀

𝑀
− σ𝑁 is in order, where 1), 2) 

and 3) are used as needed. 

1) |𝑋𝑌|𝛤𝑁 = 𝑋𝑌, since 𝑋𝑌 < 𝑁2, 𝛤 = 𝑀 > 𝑁 ⟹ 𝛤𝑁 >
𝑁2 ⟹ 𝑋𝑌 < 𝑀𝑁.  

2) 𝑀𝑀−1 − 𝑁𝑁 = 1 ⟹ 𝑀−1 =
1+𝑁𝑁

𝑀
. 

3) 𝑋𝑌 + 𝑁|𝑋𝑌�̃�|
𝑀

< 𝑁2 + 𝑀𝑁 =  

       (𝑁/𝑀 + 1)𝑀𝑁 < 2𝑀𝑁 ⟹       

       |𝑋𝑌 + 𝑁|𝑋𝑌𝑁|
𝑀

|
𝛤𝑁

= 𝑋𝑌 + 𝑁|𝑋𝑌𝑁|
𝑀

−  𝜎𝑀𝑁, 

 σ ∈ {0,1}.  

𝑍 = |𝑋𝑌𝑀−1|𝑁 = |
𝑋𝑌(1+𝑁𝑁)

𝑀
|

𝑁
=

𝑀|
𝑋𝑌(1+𝑁�̃�)

𝑀
|
𝑁

𝑀
=  

|𝑀
𝑋𝑌(1+𝑁�̃�)

𝑀
|
𝑀𝑁

Γ
=

|𝑋𝑌(1+𝑁𝑁)|𝑀𝑁

𝑀
=

||𝑋𝑌|𝑀𝑁+|𝑋𝑌𝑁𝑁|𝑀𝑁|𝑀𝑁

𝑀
=   

|𝑋𝑌+𝑁|𝑋𝑌�̃�|𝑀|𝑀𝑁

𝑀
=

XY+𝑁|XY𝑁|M− σM𝑁

𝑀
=  

𝑋𝑌

𝑀
+

𝑁|𝑋𝑌𝑁|𝑀

𝑀
− σ𝑁. 

 

 

 

 



Appendix 3 ( 𝐹𝑖2
= |

(ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

+𝑁ξω𝑖
)𝑀𝑖

𝑀
|

𝑚𝑖

 yields an 

integer): 

Proof: Recalling the integer nature of 𝐹𝑖 = |
�̂��̂�+ 𝑁Ω̂

𝑀
|

𝑚𝑖

, 

the nominator 𝐹𝑖
𝑛 = �̂��̂� +  𝑁Ω̂ is a multiple of 𝑀, and thus 

a multiple of 𝑚𝑖 leading to |𝐹𝑖
𝑛|𝑚𝑖

= 0 ⟹ 

|𝐹𝑖
𝑛|𝑚𝑖

= |
(∑ ξ𝑥𝑗

𝑀𝑗
𝑘
𝑗=1 ) × (∑ ξ𝑦𝑗

𝑀𝑗
𝑘
𝑗=1 ) +

𝑁 (∑ ξω𝑗
𝑀𝑗

𝑘
𝑗=1 )

|

𝑚𝑖

=  

|(ξ𝑥𝑖
𝑀𝑖)(ξ𝑦𝑖

𝑀𝑖) + 𝑁(ξω𝑖
𝑀𝑖)|

𝑚𝑖
=  

|(ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

+ 𝑁ξω𝑖
)𝑀𝑖|𝑚𝑖

= 0, since |𝑀𝑗|
𝑚𝑖

= 0, for 𝑗 ≠

𝑖. Therefore, ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

+ 𝑁ξω𝑖
= Ξ𝑚𝑖 is a multiple of 𝑚𝑖. On 

the other hand, 𝐹𝑖2
= |

(ξ𝑥𝑖
𝑀𝑖ξ𝑦𝑖

+𝑁ξω𝑖
)𝑀𝑖

𝑀
|

𝑚𝑖

= |
Ξ𝑚𝑖

𝑚𝑖
|

𝑚𝑖

=

|Ξ|𝑚𝑖
 completes the proof. However, to derive an integer 

expression for Ξ, we proceed as follows, where 𝑟, as before, 
denotes the width of residue channels. 

𝐹𝑖2
= |Ξ|𝑚𝑖

= |
ξ𝑥𝑖

ξ𝑦𝑖
𝑀𝑖+𝑁ξω𝑖

𝑚𝑖
|

𝑚𝑖

=  

|
ξ𝑥𝑖

ξ𝑦𝑖
(⌊

𝑀𝑖
𝑚𝑖

⌋𝑚𝑖+|𝑀𝑖|𝑚𝑖
)+ξω𝑖

(⌊
𝑁

𝑚𝑖
⌋𝑚𝑖+|𝑁|𝑚𝑖

)

𝑚𝑖
|

𝑚𝑖

=  

|⌊
𝑀𝑖

𝑚𝑖
⌋ 𝑥𝑖𝑀𝑖

−1𝑦𝑖𝑀𝑖
−1 + ⌊

𝑁

𝑚𝑖
⌋ 𝑁𝑥𝑖𝑦𝑖𝑀𝑖

−1 +

ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
+|𝑁|𝑚𝑖

ξω𝑖

𝑚𝑖
|

𝑚𝑖

=  

|
𝑥𝑖𝑦𝑖 |𝑀𝑖

−1 (⌊
𝑀𝑖

𝑚𝑖
⌋ 𝑀𝑖

−1 + ⌊
𝑁

𝑚𝑖
⌋ 𝑁)|

𝑚𝑖

+

|ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
𝑚𝑖

−1 + ξω𝑖
|𝑁|𝑚𝑖

𝑚𝑖
−1|

22𝑟

|

𝑚𝑖

, since 

ξ𝑥𝑖
ξ𝑦𝑖

|𝑀𝑖|𝑚𝑖
+|𝑁|𝑚𝑖

ξω𝑖

𝑚𝑖
< 𝑚𝑖

2 + 𝑚𝑖 = (2𝑟 − δ𝑖)
2 + (2𝑟 − δ𝑖) =

22𝑟 + 2𝑟 + δ𝑖
2 − (2𝑟+1 + 1)δ𝑖 = 22𝑟 + (1 − 2δ𝑖)2𝑟 +

(δ𝑖
2 − δ𝑖) ≤ 22𝑟. 
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